81,958 research outputs found

    Survival of the d-wave superconducting state near the edge of antiferromagnetism in the cuprate phase diagram

    Get PDF
    In the cuprate superconductor YBa2Cu3O6+xYBa_2Cu_3O_{6+x}, hole doping in the CuO2CuO_2 layers is controlled by both oxygen content and the degree of oxygen-ordering. At the composition YBa2Cu3O6.35\rm YBa_2Cu_3O_{6.35}, the ordering can occur at room temperature, thereby tuning the hole doping so that the superconducting critical temperature gradually rises from zero to 20 K. Here we exploit this to study the c-axis penetration depth as a function of temperature and doping. The temperature dependence shows the d-wave superconductor surviving to very low doping, with no sign of another ordered phase interfering with the nodal quasiparticles. The only apparent doping dependence is a smooth decline of superfluid density as Tc decreases.Comment: 4 pages, 3 figure

    Plane dimpling and Cu 4s hybridization in YBa_2Cu_3O_x

    Full text link
    Oxygen doping dimples the CuO_2 planes of YBa_2Cu_3O_{6.8-6.92} by displacing copper normal to the planes and further towards Ba. The correlated oxygen displacements, however, are constrained to the in-plane axes. This displacement pattern is discussed in terms of doping dependent Cu 4s - 3d hybridizations.Comment: 2 pages, submitted to Physica B (Proc. LT22

    Persistent electrical doping of Bi2Sr2CaCu2O8+x mesa structures

    Full text link
    Application of a significantly large bias voltage to small Bi2Sr2CaCu2O8+x mesa structures leads to persistent doping of the mesas. Here we employ this effect for analysis of the doping dependence of the electronic spectra of Bi-2212 single crystals by means of intrinsic tunneling spectroscopy. We are able to controllably and reversibly change the doping state of the same single crystal from underdoped to overdoped state, without changing its chemical composition. It is observed that such physical doping is affecting superconductivity in Bi-2212 similar to chemical doping by oxygen impurities: with overdoping the critical temperature and the superconducting gap decrease, with underdoping the c-axis critical current rapidly decreases due to progressively more incoherent interlayer tunneling and the pseudogap rapidly increases, indicative for the presence of the critical doping point. We distinguish two main mechanisms of persistent electric doping: (i) even in voltage contribution, attributed to a charge transfer effect, and (ii) odd in voltage contribution, attributed to reordering of oxygen impurities

    Possible origin of 60-K plateau in the YBa2Cu3O(6+y) phase diagram

    Full text link
    We study a model of YBa2Cu3O(6+y) to investigate the influence of oxygen ordering and doping imbalance on the critical temperature Tc(y) and to elucidate a possible origin of well-known feature of YBCO phase diagram: the 60-K plateau. Focusing on "phase only" description of the high-temperature superconducting system in terms of collective variables we utilize a three-dimensional semi microscopic XY model with two-component vectors that involve phase variables and adjustable parameters representing microscopic phase stiffnesses. The model captures characteristic energy scales present in YBCO and allows for strong anisotropy within basal planes to simulate oxygen ordering. Applying spherical closure relation we have solved the phase XY model with the help of transfer matrix method and calculated Tc for chosen system parameters. Furthermore, we investigate the influence of oxygen ordering and doping imbalance on the shape of YBCO phase diagram. We find it unlikely that oxygen ordering alone can be responsible for the existence of 60-K plateau. Relying on experimental data unveiling that oxygen doping of YBCO may introduce significant charge imbalance between CuO2 planes and other sites, we show that simultaneously the former are underdoped, while the latter -- strongly overdoped almost in the whole region of oxygen doping in which YBCO is superconducting. As a result, while oxygen content is increased, this provides two counter acting factors, which possibly lead to rise of 60K plateau. Additionally, our result can provide an important contribution to understanding of experimental data supporting existence of multicomponent superconductivity in YBCO.Comment: 9 pages, 8 figures, submitted to PRB, see http://prb.aps.or

    Preparation and Characterization of Homogeneous YBCO Single Crystals with Doping Level near the SC-AFM Boundary

    Full text link
    High-purity and homogeneous YBa2Cu3Oy single crystals with carrier doping level near the AFM-SC boundary have been obtained in the oxygen content range between y = 6.340 and 6.370. The crystals are ortho-II phase at room temperature and undergo the orthorhombic to tetragonal transition at about 140_Degree_C. They show sharp superconducting transitions, with Tc between 4 and 20 K. Tc changes by 0.8 K when the oxygen content y is changed by 0.001, and is also sensitive to annealing conditions near room temperature, due to the dependence of doping on oxygen ordering correlation lengths. Crystals with oxygen content y lower than 6.345 are non-superconducting.Comment: 6 page

    Theory of Doping and Defects in III-V Nitrides

    Full text link
    Doping problems in GaN and in AlGaN alloys are addressed on the basis of state-of-the-art first-principles calculations. For n-type doping we find that nitrogen vacancies are too high in energy to be incorporated during growth, but silicon and oxygen readily form donors. The properties of oxygen, including DX-center formation, support it as the main cause of unintentional n-type conductivity. For p-type doping we find that the solubility of Mg is the main factor limiting the hole concentration in GaN. We discuss the beneficial effects of hydrogen during acceptor doping. Compensation of acceptors by nitrogen vacancies may occur, becoming increasingly severe as x increases in Al_x Ga_(1-x)N alloys.Comment: 7 pages, 2 figures. Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
    • …
    corecore